Enhancing surface heat transfer by carbon nanofins: towards an alternative to nanofluids?
نویسندگان
چکیده
BACKGROUND Nanofluids are suspensions of nanoparticles and fibers which have recently attracted much attention because of their superior thermal properties. Nevertheless, it was proven that, due to modest dispersion of nanoparticles, such high expectations often remain unmet. In this article, by introducing the notion of nanofin, a possible solution is envisioned, where nanostructures with high aspect-ratio are sparsely attached to a solid surface (to avoid a significant disturbance on the fluid dynamic structures), and act as efficient thermal bridges within the boundary layer. As a result, particles are only needed in a small region of the fluid, while dispersion can be controlled in advance through design and manufacturing processes. RESULTS Toward the end of implementing the above idea, we focus on single carbon nanotubes to enhance heat transfer between a surface and a fluid in contact with it. First, we investigate the thermal conductivity of the latter nanostructures by means of classical non-equilibrium molecular dynamics simulations. Next, thermal conductance at the interface between a single wall carbon nanotube (nanofin) and water molecules is assessed by means of both steady-state and transient numerical experiments. CONCLUSIONS Numerical evidences suggest a pretty favorable thermal boundary conductance (order of 107 W·m-2·K-1) which makes carbon nanotubes potential candidates for constructing nanofinned surfaces.
منابع مشابه
Heat transfer augmentation in nanofluids via nanofins
Theoretical results derived in this article are combined with experimental data to conclude that, while there is no improvement in the effective thermal conductivity of nanofluids beyond the Maxwell's effective medium theory (J.C. Maxwell, Treatise on Electricity and Magnetism, 1891), there is substantial heat transfer augmentation via nanofins. The latter are formed as attachments on the hot w...
متن کاملFlow Loop Experiments Using Polyalphaolefin Nanofluids
Experiments were performed using a flow-loop apparatus to explore the performance of nanofluids in cooling applications. The experiments were performed using exfoliated graphite nanoparticle fibers suspended in polyalphaolefin atmass concentrations of 0.6 and 0.3%.The experimental setup consisted of a test section containing a plain offsetfin cooler apparatus (gap or nongap fin), whichwas conne...
متن کاملSingle Walled Carbon Nanotube Effects on Mixed Convection heat Transfer in an Enclosure: a LBM Approach
The effects of Single Walled Carbon Nanotube (SWCNT) on mixed convection in a cavity are investigated numerically. The problem is studied for different Richardson numbers (0.1-10), volume fractions of nanotubes (0-1%), and aspect ratio of the cavity (0.5-2.5) when the Grashof number is equal to 103. The volume fraction of added nanotubes to Water as base fluid are lowers than 1% to make dilute ...
متن کاملA report on the latest trends in nanofluid research
The term Nanofluids was first coined by Sir Stephen Choi in 1995 at Argonne National Laboratory ,U.S.A .Since the discovery, nanofluid have been explored as heat transfer fluids. Nanofluids increased the thermal conductivity of existing coolants (Water, Ethylene glycol) by a magnitude of hundred times which made them attractive for miniaturization of electronic devices .From 1995 till 2008 nano...
متن کاملA report on the latest trends in nanofluid research
The term Nanofluids was first coined by Sir Stephen Choi in 1995 at Argonne National Laboratory ,U.S.A .Since the discovery, nanofluid have been explored as heat transfer fluids. Nanofluids increased the thermal conductivity of existing coolants (Water, Ethylene glycol) by a magnitude of hundred times which made them attractive for miniaturization of electronic devices .From 1995 till 2008 nano...
متن کامل